HyperRS: Hypernetwork-Based Recommender System for the User Cold-Start Problem

نویسندگان

چکیده

Meta-learning has been proven to be effective for the cold-start problem of recommender systems. Many meta-learning systems that are designed user gradient-based. They use a global parameter learned from existing users initialize system new provides personalized recommendation with limited user-item interactions. require users’ demographic information learn parameter. This requirement raises privacy concerns, and is not always available. In addition, some gradient-based need dozens or even hundreds interactions difficult satisfy in specific scenarios which active their item rare. Moreover, rarely capture preferences over different attributes, as updating corresponding weights requires many optimization steps. We proposed HyperRS, Hypernetwork-based Recommender System, problem. Our does rely on provide recommendations. our system, hypernetwork generates all underlying system. The enables adapt quickly interest both attributes contents attributes. experimental results show method outperforms several state-of-the-art

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An ontological hybrid recommender system for dealing with cold start problem

Recommender Systems ( ) are expected to suggest the accurate goods to the consumers. Cold start is the most important challenge for RSs. Recent hybrid s combine  and . We introduce an ontological hybrid RS where the ontology has been employed in its  part while improving the ontology structure by its  part. In this paper, a new hybrid approach is proposed based on the combination of demog...

متن کامل

Design a Hybrid Recommender System Solving Cold-start Problem Using Clustering and Chaotic PSO Algorithm

One of the main challenges of increasing information in the new era, is to find information of interest in the mass of data. This important matter has been considered in the design of many sites that interact with users. Recommender systems have been considered to resolve this issue and have tried to help users to achieve their desired information; however, they face limitations. One of the mos...

متن کامل

Addressing the cold start problem in tag-based recommender systems

Folksonomies have become a powerful tool to describe, discover, search, and navigate online resources (e.g., pictures, videos, blogs) on the Social Web. Unlike taxonomies and ontologies, which impose a hierarchical categorisation on content, folksonomies directly allow end users to freely create and choose the categories (in this case, tags) that best describe a piece of information. However, t...

متن کامل

TrustRank: a Cold-Start tolerant recommender system

The explosive growth of the World Wide Web leads to the fast advancing development of e-commerce techniques. Recommender systems, which use personalised information filtering techniques to generate a set of items suitable to a given user, have received considerable attention. Userand item-based algorithms are two popular techniques for the design of recommender systems. These two algorithms are...

متن کامل

Recommender Systems to Address New User Cold-Start Problem with User Side Information

Due to exponential growth of Internet, users are facing the problem of Information overloading. Recommender Systems (RS) serve as an indispensible tool to solve information overloading problem. Due to their great commercial value, recommender systems have also been successfully deployed in industry, such as product recommendation at Amazon, music recommendation at iTunes, movie recommendation a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2023

ISSN: ['2169-3536']

DOI: https://doi.org/10.1109/access.2023.3236391